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3. Timeline: Expect to complete this work by December 2022 
 
4. Rationale:  
 
The prognosis of some cancer can be greatly improved if these cancers are detected early. A 
recent study combined genetic alterations and a small number of candidate protein biomarkers 
into a multi-analyte blood-based test called CancerSEEK to identify the presence of cancer1,2. 
The test has a median sensitivity of 70% in 8 common cancer types (breast, colorectum, 
esophagus, lung, ovary, pancreas, stomach, liver, lung) while maintaining a high specificity 
(>99%) in the non-cancer samples. The utility of this test when coupled with PET-CT was 



documented in the DETECT-A trial in women1. However, a more informative set of proteins 
markers beyond the preliminary candidates may improve the sensitivity of detection of early-
stage cancers (e.g., pre-clinical) while optimizing specificity for population use. Additional 
proteins may extend the types of cancers identified beyond the 8 cancer types, including those 
without currently available screening tools.  
 
We propose a case-control study3 to identify plasma proteins that differ in level between cancer 
cases and controls using the SomaLogic protein data from approximately 10,539 participants of 
the Atherosclerosis Risk in Communities (ARIC) study4. The ARIC study has already measured 
the protein data at three time points and has ascertained cancer incidence over nearly 30 years, 
making it a unique resource for discovering protein biomarkers for cancer screening. We will 
identify cancer cases as those with cancer diagnosis following their biospecimen collection, and 
restrict the controls to persons who never had a cancer history before or after the time that the 
sample used for protein measurement was collected. This study differs in concept and approach 
from one addressing proteins in the etiology or risk of cancer incidence in that we aim to identify 
proteins that are produced by tumors or in response to tumors (rather than proteins that mark 
exposures or response to exposures), and accordingly, we hope to identify proteins in the ARIC 
interval blood draw that are produced by tumors or in response to tumors that precede initial 
cancer diagnosis, and can discriminate subsequent cancer cases and controls well. As shown in 
previous literature5–7, markers with etiological associations might not necessarily be good 
candidates for classifiers.  
 
Participants have ~5,000 proteins measured by SomaScan v.4 (SomaLogic, Boulder, CO), an 
aptamer-based technology, at visit 2, 3 and visit 5 in the ARIC study8. Of ARIC participants 
diagnosed with cancer, we will select those diagnosed with cancer after their ARIC visit. Cases 
will be defined as those who had a cancer diagnosis within pre-specified windows of time after 
the sample used for protein measurement was collected (e.g., 2, 3, 5 years) at visit 2, 3, or 5. 
Since visits 2 and 3 were 3 years apart, for cases diagnosed within >0 to 7 years from visit 3 
sample collection, we will also use their visit 2 protein as part of the repeated measurements for 
the discovery analysis. Controls will be defined as those without a cancer (invasive) history 
(except non-melanoma skin, for which ascertainment is not done by cancer registries) throughout 
the entire ARIC follow-up and did not die of cancer. We will include all ARIC participants that 
meet the eligibility criteria for “control”; matching will not be done. Hori et al. showed that 
tumors could start to grow 10 years before becoming detectable by biomarker preclinical phase9. 
Thus, we will explore a range of time windows for detection for the purpose of fully discovering 
any possible protein patterns in the early phase of cancer’s natural history or the body’s early 
response to a tumor, at a time before the cancer becomes detectable in screening tests in routine 
use or the onset of symptoms. We will compare the performance of discovery and prediction at 
different time windows, but we expect the best predictive capacity would be maximized in the 
shorter time windows from blood draw to cancer diagnosis.  
 
At the time, we are not aware of other prospective cohort studies with repeated SomaScan 
measures. Thus, we will use the following strategy in this study: We will divide the eligible 
participants data into two sets (70% vs 30%) for the discovery and prediction model building,  
and for the model performance assessment.  
In the discovery analysis and model building phase using the 70% set:  



• First, we will scan for proteins that differ between the cases and controls irrespective of cancer site or any 
other potential confounders. To account for the interactive nature of proteins, we will scan proteins for 
differences between cases and controls first individually, then in clusters or networks of proteins.  

•      Second, we will examine if proteins that differ between the cases and controls are related to 1) 
demographics (age, sex, race, field center), socioeconomic factors (life course SES, access to and uptake of 
healthcare), cancer site, stage at cancer diagnosis, tumor histology, 2) then integrating with major cancer 
risk and protective factors (smoking, obesity, alcohol drinking, diabetes, family history) adjusted by 
propensity scores using the inverse probability of weighting method.    

•      Next, in an exploratory step, we will repeat the prior two steps within the subgroups of:  
o common cancer sites either individually (lung, breast, prostate, colorectal, pancreatic, ovarian) or 

in subgroups with expected common damage or activated/inactivated pathways (e.g., obesity 
associated, smoking associated, gastrointestinal, hormone). For prostate cancer, controls will be 
restricted to men (presumed persons with a prostate). For breast (female post-menopausal), 
ovarian, and endometrial cancer, controls will be restricted to women (presumed persons with 
these organs) 

o sex/gender (for cancers of non-sex specific organs), race (e.g., due to receptor status prevalence 
differences, such as triple negative breast cancer), stage at diagnosis (e.g., the goal is to detect 
cancers while they are localized and not symptomatic), histology (e.g., adenocarcinoma), cancer 
risk or protective factors that may be useful for risk stratification for screening (e.g., already know 
that smoking associated cancers are more likely to be found in smokers – smoking history is 
incorporated into lung cancer screening guidelines), or that affect the likelihood of cancer 
diagnosis in ARIC (e.g., access to and uptake of care).  

•      For model building, we will use statistical models suitable for high-dimensional data, such as linear mixed 
methods with lasso or non-linear methods (e.g., support vector machine, random forest model, and neural 
net) to identify a reduced number of protein markers with optimal classification performance. the leave-
one-out cross-validation method to select the model with a group of proteins with optimal classification 
performance. The ideal panel of proteins should have a satisfactory sensitivity as well as a very high 
specificity for population screening. 
 

In the predictive modeling analysis phase using the 30% set:  
We will use the remaining sample to internally validate the prediction model for early cancer 
classification. We will evaluate the top performers based on model fitness, discrimination 
statistics (ROC/AUC, sensitivity and specificity, especially true negative rates on non-cancer 
samples). We will determine a threshold in this dataset that maximizes specificity needed in a 
cancer screening setting. 
 
We are aware that circulating proteins can differ within and between person due to genetic 
polymorphisms, pseudogenes, and post-translational modifications, and different technologies 
may have differing sensitivities for their detection. Thus, after sets of proteins are identified in 
this study in ARIC, the Papadopoulos/Kinzler/Vogelstein laboratory will first calculate the 
correlation between the measurements of proteins from SomaScan we discovere and those from 
the BioPlex platform which CancerSEEK used, and then conduct an independent protein identity 
confirmation analysis using non-ARIC samples. This step is necessary for the development of 
screening tools. Though variation was seen in absolute measurements of proteins from the two 
platforms10, relative changes (fold change or trend) were reported to hold between different 
platforms11. Therefore, we hypothesize the proteins we identified with elevated or lowered levels 
should be recognized in both platforms.  
 
 
Key points: 



In this study, our primary goal is to identify proteins or patterns of proteins across cancer sites in 
participants with a cancer diagnosis within 2-5 years that differ in plasma level from participants 
without a cancer history. We aim to (1) discover the unique proteins or protein clusters that differ 
among cancer sites, as well as signals of proteins specific to cancer sites or other demographic 
factors, and (2) build a prediction model for early cancer classification based on the panels of 
proteins selected from the discovery analysis.  
 
 
5. Main Hypothesis/Study Questions:  
 
Our overarching hypothesis is that before a cancer becomes detectable using current screening 
tools or before the onset of symptoms, plasma proteins directly secreted from tumor cells or a 
result of the body’s response to a growing tumor can be detectable. Such proteins individually or 
in combination, might have utility for early detection.  
 
Therefore, we propose this study to discover proteins that may have used for cancer screening in 
currently asymptomatic populations. Our goal is to identify a panel of protein markers that can 
(1) either maximize the window of the detectable preclinical phase, in other words, enable cancer 
to be detected at an even earlier moment than current screening tools, which was, in theory, 
possible due to the high sensitivity and reliability of SomaScan for individual protein 
measurements, and our strategy to discover panels of proteins accounting for their interactive 
nature, (2) increase the sensitivity/specificity of the screening in the same time window of 
preclinical phase for cancers with current screening tools, or (3) detect cancers that do not 
currently have a routinely used screening tool (Figure 1). We also expect that we will detect 
aggressive cancers over indolent cancers (important for common cancers like breast and 
prostate). We will further compare proteins between cases that later did and did not die of their 
cancer.  
 
Figure 1. Screening timeline12.  

 
Among ARIC participants diagnosed with a first primary (invasive) cancer within windows of 
time after protein collection (e.g., 2, 3, 5 years) at visit 2, 3 or 5, and participants without a 
cancer history, evaluate (Fig 2): 
 
Figure 2. Flow chart of study design and primary objectives.  



 

  
 
Q1: What proteins are statistically different between cancer cases and controls? 
 
Q2a: What proteins are statistically different between cancer cases and controls after adjusting 
for propensity score using inverse probability of weighting estimated based on demographics 
(age, sex, race, field center) and socioeconomic factors (life course SES, access to and uptake of 
healthcare)? 
 
Q2b: What proteins are statistically different between cancer cases and controls after adjusting 
for propensity score and integrating major cancer risk and protective factors (smoking, obesity, 
alcohol drinking, diabetes, family history) with covariates mentioned in Q2a?  
 
Exploratory analysis:  
We will repeat the Q1-2 within the subgroups of cancer sites either individually or in subgroups 
with expected common damage or activated/inactivated pathways; sex/gender, race, stage at 
diagnosis, and histology. 
 
Q3a: Can the set of proteins above (Q1-2) predict subsequent near-term cancer status and  
 
Q3b: What is the predictive model’s performance on the withheld samples?  
 
 
6. Design and analysis (study design, inclusion/exclusion, outcome, and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study design:  
 



Q1 and Q2a-b – Identify a subset of proteins using a case-control set. 
 
Q3 – Develop a prediction model using the subset of proteins in the case-control study and assess 
of performance on a withheld set of samples.  
 
Analytic population:  
Q1 and Q2: Men and women who have Visit 2, 3, or 5 protein scan data that passed quality 
control checks, who consented to studies on chronic diseases including cancer are eligible.  
We will exclude participants who are not White or Black and participants who are Black from 
the Washington County and suburban Minneapolis (small numbers).  
 
From these participants, we will select all eligible cancer cases, and all eligible participants 
without a cancer history, using these criteria (Figure 3-4, Table 1): 

• Subsequent cancer cases - participants who had one or more first primary invasive 
cancers (other than non-melanoma skin) or bladder in situ (state cancer registries require 
reporting) diagnosed within windows of time after protein collection (e.g., 2, 3, 5 years) 
at visit 2, 3, or 5. Participants with a non-melanoma skin cancer or a pre-malignant tumor 
who develop an invasive cancer of any site after visit 2, 3, or 5 are eligible to be selected 
as a case. 

o For cancer patients diagnosed within >0 to 7 years from visit 3, their visit 2 
protein data will also be used (repeated measures) to expand the detection 
window.  

• Participants without a cancer history - participants who never had a cancer diagnosis by 
Visit 5 (current end of cancer follow up) and did not die of cancer (2018 is the current 
end of cancer end of follow up). Participants with a diagnosis of non-melanoma skin 
cancer or in situ malignancies are eligible to be controls (aside from bladder in situ (state 
cancer registries require reporting). 

 
Figure 3. Participants to be included and excluded from the analysis 

Study population 
Status at  

Visit 2, 3, or 5 

Status at 2, 3, 5 
years after Visit 2, 

3,5 Status in the analysis 
 
Row 1: Included No cancer 

First primary 
cancer(s) Case 

 
Row 2: Included No cancer No cancer Control 
 
Row 3: Excluded Cancer(s) No cancer - 
Row 4: Excluded Cancer(s) Cancer(s) - 

 
Figure 4. Case Definition  
 
 



 
 
Table 1. Preliminary* sample size for cancer cases and controls.  
 

  
 

Participants who developed cancer within 5 
years after Visit 2/3/5 (Row 1 in Figure) 

1,100 

Participants without a history of cancer through 
12/31/2015 and who did not die of cancer 
through 12/31/2018 (Row 2 in Figure) 

10,054 

  
Cancer cases after Visit 2 
>0 to 2 Years 
>0 to 3 Years 
>0 to 5 Years 
Median time from Visit 3 to cancer dx [IQR] 

255 
119 
219 
255 

2.10 [1.34 – 2.73] years 
Cancer cases after Visit 3 
>0 to 2 Years 
>0 to 3 Years 
>0 to 5 Years 
Median time from Visit 3 to cancer dx [IQR] 

527 
192 
307 
527 

2.61 [1.39, 3.88] years  
Cancer cases after Visit 5 (through the max 
follow up of 12/31/2015) 
>0 to 2 Years 
>0 to 3 Years 
>0 to <5 Years 
Median time from Visit 5 to cancer dx [IQR] 

 
318 
183 
259 
318 

1.72 [0.89, 2.76] years  
* The sample size here might be lower after utilizing the annual follow-up or semi-annual follow-up responses 
to identify self-reported cancer diagnosis to refine the control group between the end of cancer follow up in 
12/31/2015 and end of death follow up in 12/31/2018 (e.g., diagnosed with a cancer in that interval, but did not 
die of it) and other possible exclusion. 
 
Table 2. Sample size for cancer site by time to diagnosis after specified.  

  Time to Diagnosis 
Cancer Site  Total  >0 to <5 

Years After 
>0 to <5 
Years After 

>0 to 
<5 
Years 



Visit 2 
(N=255) 

Visit 3 
(N=527) 

After 
Visit 5 
(N=318) 

Head & Neck 23 1 15 7 
Colon 81 15 41 25 
Rectal 12 1 7 4 
Liver 5 0 1 4 
Pancreatic 49 13 16 20 
Stomach 20 7 9 4 
Other digestive 25 6 12 7 
Lung/Bronchus 182 63 78 41 
Other Respiratory 9 2 7 0 
Hematopoietic and 
Lymphatic 

104  24 37 43 

Melanoma skin 32 2 14 16 
Breast 147 31 74 42 
Cervical 7 1 4 2 
Endometrial  21 2 10 9 
Ovarian  16 5 8 3 
Prostate 210 44 128 38 
Bladder 48 5 20 23 
Kidney 27 6 13 8 
Brain 21 10 9 2 
Thyroid 4 0 3 1 
Other  42 9 16 17 
Unknown 23 10 8 5 

* Highlighted: cancer sites with >40 cases, which we will focus on cancer site subgroup analysis.  
 
 
Measurements:  
 
Protein scan – We will use protein levels, measured as relative fluorescence units [RFU] for a 
standard plasma volume per participant using aptamer-based profiling in blood collected at Visit 
2, 3 and 5.  
 
Some proteins were FLAGGED on one or more plates. Several options are available for handling 
such proteins: exclude protein (conservative), include protein (not conservative), exclude only if 
the number of plates with the flagged protein is larger than expected by chance alone (optimal, 
but need to define an arbitrary expected) 
 
Cancer – Existing 2015 ARIC cancer case file, which captures cases diagnosed between Visit 1 
and 12/31/2015; we will also utilize the annual follow-up or semi-annual follow-up responses to 
identify self-reported cancer diagnosis to refine the control group between the end of cancer 
follow up in 12/31/2015 and end of death follow up in 12/31/2018 (e.g., diagnosed with a cancer 
in that interval, but did not die of it). 



 
Additional variables (either covariates or for use in sensitivity analyses): 
 
Demographics: age at Visit with proteins, age at diagnosis, sex (Visit 1), race (Visit 1), field 
center (Visit 1) 
 
Socioeconomic factors: Lifecourse SES (Visit 4), neighborhood income, health insurance status, 
frequency of routine physical examination, having a dentist, frequency of routine dental visit, last 
time of dental visit (Visit 4)  
 
Other covariates: Body mass index (Visits 2, 3, 5), waist circumference, height (Visit 1), blood 
volume (derived from height and weight), cigarette smoking status and pack years (accumulated 
to Visit 2, 3, 5), DNA methylation predicted smoking pack years, alcohol consumption (Visit 5), 
diabetes status (accumulated Visit 2, 3, 5, also included undiagnosed diabetes, uncontrolled 
diabetes), hypertension medication use, cholesterol medication use, aspirin use (Visit 2, 3, 5), 
statin drug use (Visit 2, 3, 5), hormone replacement therapy use (women, Visit 2, 3, 5)  
 
Factors that influence plasma protein levels or are indicative of acutely distorted protein levels 
(for sensitivity analyses): In a subanalysis, we will exclude participants using a diuretic at Visits 
2, 3, 5. Key proteins that mark kidney and liver function and acute phase inflammation were 
measured currently in the protein scan. In the sensitivity analysis, we will exclude individuals at 
the extremes of the distributions of these: cystatin-C; aspartate aminotransferase [AST] and 
alanine aminotransferase [AAT]; and C-reactive protein, respectively (Visits 2, 3, 5). As an 
alternative, we could use indicators previously measured, albeit, not concurrently with the 
protein scan, that have clinically relevant cutpoints: eGFRcr-cys (15 mL/min/1.73m2 [stage 5]), 
hsC-reactive protein concentration (acute inflammation, 10 mg/L), liver function (>3 times the 
reference ranges: ALT 7-56 IU/L, AST 0-35 IU/L). 
 
Statistical analysis 
 
In the discovery and prediction model building phase (Q1-3a), 70% of data from visit 2, 3 and 
visit 5 will be used.  
 
Q1: Assess the crude difference in plasma protein levels between cancer cases and controls  
In this step, we aim to identify any pre-diagnostic plasma protein levels that differ between the 
cancer cases and controls using linear regression models for each protein. The model will only 
contain a fixed factor for the binary indictor of being a cancer case or a control. This differential 
analysis will be conducted without adjustment to reflect the feasibility and applicability of using 
plasma protein levels for cancer detection in the general population.  
 
Q2a: Assess the difference in protein levels between cases and controls with propensity score 
weights estimated by demographics (age, sex, race, field center) and socioeconomic factors (life 
course SES, access to and uptake of healthcare) using linear regression models with the same 
specifications as in Q1.  
 



Q2b: Assess the difference in protein levels between cases and controls with propensity score 
weights estimated by major cancer risk and protective factors (smoking, obesity, alcohol 
drinking, diabetes, family history) as well as factors used in Q2a using the same linear regression 
models.  
 
Exploratory analysis: Analysis in Q1-2 will be repeated with the same method in the following 
subgroups to allow for discovery of different sets of proteins: major cancer sites (prostate, breast, 
lung, colorectal), sex/gender, age, race, study site, stage at cancer diagnosis, cancer histology, 
major cancer risk factors (smoking, obesity, alcohol drinking, diabetes, and family history of 
cancer) 
 
Since there were only 3 years apart from visit 2 and 3, it’s likely that some cancer cases 
diagnosed after visit 3 can still fall under the early detection time window for visit 2. In that case, 
we plan to conduct a sensitivity analysis using a linear mixed model to examine if time-updated 
protein levels can enhance the discovery.  
 
We will also determine whether the proteins newly identified enrich certain pathways (e.g., using 
propriety software such as Ingenuity https://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis/, or use publicly available databases such as STRING https://string-
db.org/cgi/input.pl?sessionId=MsFSlNgwAW97&input_page_show_search=on, which includes 
KEGG https://www.genome.jp/kegg/brite.html#gene and Reactome 
https://reactome.org/PathwayBrowser/ databases. We will also examine the Spearman 
correlations among these proteins in the cases and in the controls. 
 
 
Q3a: Prediction model building.  
 
Based on the findings from the discovery phase of analysis, we will use leave-one-out cross-
validation method to build the prediction model with the most informative protein sets. More 
sophisticated statistical models, such as linear mixed methods with lasso or non-linear methods 
(e.g., support vector machine, random forest model, and neural net), will be adopted as necessary 
to reduce the dimensions and capture the combinatorial protein patterns. In addition to building 
one model predicting all near-term cancer diagnoses, we will also explore the potential of 
combining multiple models built for each major cancer types to enhance power and account for 
the heterogeneity among cancer types.   
 
The remaining 30% of the participants will be used for performance assessment of the prediction 
model built in Q3a. 
 
Q3b: Prediction model evaluation.  
 
We will select the top performers based on model fitness, discrimination statistics (ROC/AUC, 
sensitivity and specificity, especially true negative rates on non-cancer samples). We will 
determine a threshold in this dataset that maximizes specificity needed in a cancer screening 
setting.  
 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
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https://string-db.org/cgi/input.pl?sessionId=MsFSlNgwAW97&input_page_show_search=on
https://string-db.org/cgi/input.pl?sessionId=MsFSlNgwAW97&input_page_show_search=on
https://www.genome.jp/kegg/brite.html#gene
https://www.genome.jp/kegg/brite.html#gene
https://reactome.org/PathwayBrowser/
https://reactome.org/PathwayBrowser/


We will also evaluate the performance of prediction in each time window, that is, cancer 
diagnosis within 2, 3, 5 years after visit 2, 3, 5 using a time-to-event analysis (Cox regression) 
model to generate AUC to reflect the timing feature of the cancer diagnosis.  
 
We will apply our model using the pre-determined cutoff for positivity to a completely 
independent external validation set from the CancerSEEK study. The CancerSEEK samples offer 
a large number of cancers and non-cancers to determine how robust our estimates for sensitivity 
and specificity are.  
 
Propensity score 
 
For Q2a, we will model the association of age (continuous), sex, race, field center, lifecourse 
SES, neighborhood income, health insurance status, frequency of routine physical examination, 
having a dentist, frequency of routine dental visit, last time of dental visit with cancer status 
using logistic regression to predict the propensity score for each participant13. We will confirm 
the positivity assumption of the use of the propensity score (i.e., no/negligible number of 
participants have a probability of 0 or 1 of being a cancer case) and determine whether the 
overlap in scores between cancer cases and those without a cancer history is satisfactory.  
Inverse probability weighting of propensity score will be used to avoid potential mismatch on 
propensity scores between the cancer cases and controls on both ends of the distributions of 
propensity scores. For Q2b, we will repeat these steps with an expanded set of variables with 
cancer risk/protective factors, which include smoking, obesity, inactivity, alcohol drinking, 
diabetes, family history. 
 
An additional sensitivity analysis will be performed based on matched propensity scores on 
overlapped cases and controls to test the robustness of results.  
 
* Including common cancer risk/protective factors via a propensity score will allow us to 
investigate the incremental value of plasma protein levels on cancer detection. Moreover, it 
could provide new insights on risk stratification for cancer screening in future practice, such that 
a specific group of smokers with certain protein patterns would carry higher risk of certain 
cancer and should be the target population for cancer screening.  
 
We will generally follow statistical analysis approaches described previously for proteomics data 
in epidemiologic studies14–16.  
 
Multiple testing Adjustment 
 
In the individual protein discovery stage, we will consider false discovery rate (FDR) and 
Bonferroni correction to deal with multiple testing. In the stage of prediction modeling with 
combinations of proteins, we aim to find a minimum set of proteins that will maximize the 
prediction together.  
 
Minimum detectable association   
Based on conventional p-values corrected for multiple testing (alpha = 0.05/5000 = 0.00001) and 
currently available sample size estimates, 490 cases from the 2-year window and 10,000 



controls, we estimate the minimum detectable effect size using a 2-sided t-test with a power of 
80%. Utilizing the pwr.t2n.test function from the R package ‘pwr’, we were able to obtain the 
Cohen’s D effect size as 0.24 between cases and controls, which is considered a small to medium 
effect size. Cohen’s D effect size is defined as mean difference between two groups divided by 
pooled standard deviation17.  
 
 
Points of clarification, challenges, and potential pitfalls and solutions:  
 
• As some cancers can be detected and diagnosed early on through active screening, such as 

breast cancer and prostate cancer, the diagnosis of these cancers is highly dependent on the 
access to healthcare. Therefore, when estimating the propensity score, access to care is an 
essential factor to consider. However, given the age of the participants in the ARIC cohort, 
many of them would be eligible for Medicare. Thus, there would be less variability on health 
insurance coverage, which makes it a suboptimal indicator for access to care. Thus, we 
included dental insurance coverage, frequency, and usage of dental care to better address this 
confounder.  
 

• In case there is no satisfactory overlap in propensity scores estimated by the factors mentioned 
previously, we choose to perform weighted analyses with propensity scores in our main 
analyses. We will run propensity score matching on mostly overlapped samples between cases 
and controls as a sensitivity analysis.  

 
• In the ARIC cohort, we only know the timing of a cancer diagnosis, not the earliest date of 

symptom onset. Therefore, it’s possible to have cancer patients already manifesting symptoms 
when their samples were drawn at the study visit. This means the signals in their blood samples 
might have passed beyond the time window for screening interventions. Therefore, we might 
need to expand our detection window (e.g. up to 10 years) to reduce the chance that they were 
already symptomatic but undiagnosed at blood draw. We will also utilize the annual follow-up 
or semi-annual follow-up to identify any symptoms or hospitalizations between visits that 
might indicate cancer.  
 

• Non-melanoma skin cancers (basal, squamous cell) are not routinely collected by US cancer 
registries. While we will not be able to exclude participants with non-melanoma skin cancer 
from the controls, we will handle the cases in a parallel manner, if their medical records or self-
report history indicate a non-melanoma skin cancer; if the skin cancer is the first diagnosis, and 
a second primary cancer occurs, then these participants would be eligible for selection as a first 
primary cancer based on the second primary cancer diagnosed. This strategy is appropriate in 
that we do not aim to identify proteins for the early detection of non-melanoma skin cancer, 
which has an indolent course.  
 
Similarly, we will not exclude from either the cases or controls participants with pre-malignant 
lesions because these are not systematically detected in populations and are not routinely 
collected in ARIC (e.g., cervix pre-malignant lesions, colorectal adenoma). Exceptions are 
those that are routinely collected by ARIC because cancer registries systematically collect 
them (non-invasive bladder cancer). 



 
• For controls in the study, we did not specify that the participant must have intact each organ as 

aligned with the array of cancer sites detected with the cases in ARIC. In the US, hysterectomy 
with or without oophorectomy is a common procedure for the treatment of several non-cancer 
conditions. Also, women who carry BRCA1/2 mutations often have prophylactic mastectomy 
and oophorectomy. Including women who had such procedures in the control group would 
distort the comparison of proteins between cases (have the organ intake) and controls (do not 
have the organ). Thus, we will determine whether ARIC has sufficient information available to 
perform sensitivity analyses excluding participant who had organs that are common cancer 
sites surgically removed for reasons other than to treat cancer at any point in follow up. 

 
• There is variability in proteomic profiles measured by different proteomics platforms. To 

investigate the reproducibility of our findings, we will also validate our discovery findings in 
proteins measured by another proteomics technology (e.g., ELISA) in the 
Papadopoulos/Kinzler/Vogelstein laboratory using non-ARIC samples. We also note, our 
detection capability of proteins might depend on the genetic polymorphisms, pseudogenes and 
post-translational modifications they have whether within or between person, potentially under 
the influence of the tumor.  

 
• Given the large number of proteins in the scan, we recognize the potential statistical issue of 

inflating type I errors brought by the multiple tests we will perform on the proteins. We will 
use Bonferroni correction and false discovery rate to address this issue. However, since the 
proteins might be very likely correlated, the multiple tests we will perform will not likely to be 
independent, thus we prioritize finding groups of protein that are related to cancer diagnosis. 
We plan to further reduce the dimensions by using penalized regression models or feature 
selection algorithm or collapsing individual proteins to enriched pathways or groups with 
homogenous patterns identified by the models. We will also explore the approach of creating a 
composite score consisting of all the informative proteins identified and selecting the best set 
with the highest score. A later goal will be to test the performance of such score in an external 
sample.  

 
• We recognize that the sample size can be small for ‘omics research for specific cancer site. Our 

main goal is to identify potential protein markers that capture the differences between those 
with and without a cancer history at a pan-cancer level. As the sample size allows, we will 
target on discovering proteins that provide an early warning for a specific cancer before the 
occurrence of symptoms, since different cancers can have substantially heterogenous etiology 
or mechanisms. We intend this study to provide preliminary data for future studies to further 
examine the role of novel candidate proteins in early detection in a bigger sample.  
 

• We recognize that we might not know the proteins we will identify in this study will be 
coupled with appropriate treatment that will prevent cancer death. A randomized clinical trial 
like NLST (https://www.cancer.gov/types/lung/research/nlst)) will need to be performed as 
was done for spiral CT as the tool for lung cancer early detection .  

 
7.a. Will the data be used for non-CVD analysis in this manuscript? __X__ Yes    ____ No 
 



 b. If Yes, is the author aware that the file ICTDER03 must be used to exclude persons 
with a value RES_OTH = “CVD Research” for non-DNA analysis, and for DNA 
analysis RES_DNA = “CVD Research” would be used? ___X_ Yes    ____ No 
(This file ICTDER has been distributed to ARIC PIs, and contains  
the responses to consent updates related to stored sample use for research.) 

 
8.a. Will the DNA data be used in this manuscript? ____ Yes    _X___ No 
 
8.b. If yes, is the author aware that either DNA data distributed by the Coordinating 

Center must be used, or the file ICTDER03 must be used to exclude those with value 
RES_DNA = “No use/storage DNA”? ____ Yes    ____ No 

 
9. The lead author of this manuscript proposal has reviewed the list of existing ARIC 

Study manuscript proposals and has found no overlap between this proposal and 
previously approved manuscript proposals either published or still in active status.  
ARIC Investigators have access to the publications lists under the Study Members Area of 
the web site at:  http://www.cscc.unc.edu/ARIC/search.php 

 
___X___ Yes     _______ No 

 
10. What are the most related manuscript proposals in ARIC (authors are encouraged to 
contact lead authors of these proposals for comments on the new proposal or 
collaboration)? 
 
MS # 3057: Repeatability and Longitudinal Variability of the Plasma Proteome (Tin, Coresh et 
al.) 
 
MS # 3415: Characterizing prostate specific antigen (PSA) measured by SOMAscan and its 
correlates in men and women in ARIC (Platz, Tin, Coresh et al.) 
 
Ancillary study: 2019.06 Systemic Inflammation, Aging phenotypes and Mortality in Cancer 
survivors and associated manuscript proposals to be submitted (Ugoji et al.) 
 
MS # 3327 A proteomic analysis of incident dementia: The ARIC Study (Walker et al.) 
 
11.a. Is this manuscript proposal associated with any ARIC ancillary studies or use any 
ancillary study data? __X__ Yes    ____ No 
 
11.b. If yes, is the proposal  

___  A. primarily the result of an ancillary study (list number*  
2017.27 Proteomic longitudinal ARIC study: SOMAscan of multiple visits 
2011.07 Enhancing ARIC Infrastructure to Yield a New Cancer Epidemiology Cohort  
1995.04 Cancer Study 

___  B. primarily based on ARIC data with ancillary data playing a minor role 
(usually control variables; list number(s)* __________  __________ __________) 

 

http://www.cscc.unc.edu/ARIC/search.php
http://www.cscc.unc.edu/ARIC/search.php


 
*ancillary studies are listed by number at http://www.cscc.unc.edu/aric/forms/   
 
12a. Manuscript preparation is expected to be completed in one to three years.  If a 
manuscript is not submitted for ARIC review at the end of the 3-years from the date of the 
approval, the manuscript proposal will expire. 
 
12b. The NIH instituted a Public Access Policy in April, 2008 which ensures that the public 
has access to the published results of NIH funded research.  It is your responsibility to upload 
manuscripts to PubMed Central whenever the journal does not and be in compliance with this 
policy.  Four files about the public access policy from http://publicaccess.nih.gov/ are posted in 
http://www.cscc.unc.edu/aric/index.php, under Publications, Policies & Forms. 
http://publicaccess.nih.gov/submit_process_journals.htm shows you which journals 
automatically upload articles to PubMed central. 
 
13. Per Data Use Agreement Addendum, approved manuscripts using CMS data shall be 
submitted by the Coordinating Center to CMS for informational purposes prior to 
publication. Approved manuscripts should be sent to Pingping Wu at CC, at 
pingping_wu@unc.edu. I will be using CMS data in my manuscript ____ Yes __X__ No. 
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